Acta Crystallographica Section C
Crystal Structure Communications
ISSN 0108-2701

Hamigerin A and a hamigerin D decomposition product

Richard C. Cambie, Clifton E. F. Rickard,* P. Stewart Rutledge and Keri D. Wellington

Department of Chemistry, University of Auckland, Private Bag 92019, Auckland, New Zealand
Correspondence e-mail: c.rickard@auckland.ac.nz

Received 11 January 2001
Accepted 4 May 2001
The sponge Hamigera tarangaensis has yielded eight new compounds and we report here the structure of one of these compounds, hamigeran $\mathrm{A}, \mathrm{C}_{20} \mathrm{H}_{25} \mathrm{BrO}_{5}$, or methyl 7-bromo$4 \beta, 6$-dihydroxy- 1β-isopropyl-3a $\alpha, 8$-dimethyl-5-oxo-1a,3a,4,5tetrahydrocyclopenta $[a]$ naphthalene-4-carboxylate, and the decomposition product of hamigeran $\mathrm{D}, \mathrm{C}_{21} \mathrm{H}_{28} \mathrm{BrNO}_{4}$, namely 2-(8-bromo-2 $\beta, 7$-dimethyl-4-oxo-1,3 α-benzoxazan-5-yl)-3-isopropylcyclopentylacetic acid.

Comment

As part of a search for biologically active compounds from New Zealand sponges, extracts from Hamigera taragaensis yielded eight new compounds. The structural elucidation, by NMR spectroscopy, of seven of the compounds and the structural revision of the eighth compound have been published elsewhere (Wellington et al., 2000). In order to confirm the structure assignments and establish the absolute stereochemistries, single-crystal X-ray studies were carried out on hamigeran A, (I), and the decomposition product, (II), of hamigeran D , (III).

The structure of (I) is illustrated in Fig. 1 which shows the absolute stereochemistry and confirms the chemical assignment. The six- and five-membered rings are cis fused at the ring junction $\mathrm{C} 5-\mathrm{C} 9$. There is some strain in the molecule at this point evidenced by the bond lengths C5-C6 1.565 (5), C5-C9 1.562 (5) and C8-C9 1.575 (6) Å, which are slightly longer than the remaining $\mathrm{C}-\mathrm{C}$ single bonds. These distances are consistent with tabulated values for a pentasubstituted C-C bond (Allen et al., 1987). The C6-C12 bond is stag-
gered [C5-C6-C12-C13 $172.3(4)^{\circ}$], orienting the isopropyl group well clear of the five-membered ring. The torsion angle $\mathrm{C} 9-\mathrm{C} 10-\mathrm{C} 17-\mathrm{O} 5$ is 163.3 (3) ${ }^{\circ}$, which orients the ester group so as to minimize steric interactions in this area.

There is an intramolecular hydrogen bond between the phenolic $\mathrm{H} 3 A$ atom and the carbonyl O 2 atom, the $\mathrm{O} 3 \cdots \mathrm{O} 2$ separation is 2.580 (6) \AA. The hydroxyl H1 A atom does not seem to be involved in a hydrogen bond, the closest approach to an acceptor atom being $2.80 \AA$ to O5. There are no significant intermolecular interactions.

The structure of (II) contains two independent molecules in the unit cell which are linked into a dimer through hydrogen bonds. Fig. 2 shows the structure of the dimeric unit. The numbering of the O and C atoms of the second molecule are obtained by adding 20 to those of the first molecule. The crystal structure confirms the structural assignment and establishes the absolute configuration. The two molecules have a remarkably similar conformation, even though there is the possibility of free rotation about the $\mathrm{C} 4 A-\mathrm{C} 5, \mathrm{C} 6-\mathrm{C} 13$ and $\mathrm{C} 9-\mathrm{C} 10$ bonds. The torsion angles within the two molecules are 65.2 (3) and $72.9(3)^{\circ}$ for $\mathrm{C} 5-\mathrm{C} 9-\mathrm{C} 10-\mathrm{C} 12$, and $-63.1(3)$ and $-60.1(3)^{\circ}$ for $\mathrm{C} 5-\mathrm{C} 6-\mathrm{C} 13-\mathrm{C} 14$, respec-

Figure 1
The structure of (I) showing 50\% probability displacement ellipsoids. H atoms have been omitted for clarity.

Figure 2
The structure of (II) showing the hydrogen bonding with the non-H atoms shown with 50% probability displacement ellipsoids. H atoms and the label for C29, which is bonded to C25 and C28, have been omitted to avoid crowding.
tively. The same bond lengthening around the pentasubstituted C5-C9 bond as shown in (I) is seen again here [C5C6 1.568 (4) and 1.576 (3) A; C5-C9 1.576 (4) and 1.573 (4) \AA; C8-C9 1.553 (4) and 1.551 (4) Å], even though the constraint on the configuration imposed by the ring junction is absent.

The two independent molecules are linked by intermolecular hydrogen bonds. There is a strong interaction between the carboxylic acid groups: O4…O24 2.599 (4) \AA and O3. . O23 2.643 (3) \AA. There is a somewhat weaker interaction between the amide groups; N1 . O O22 2.903 (3) \AA and $\mathrm{N} 2 \cdots \mathrm{O} 2.858(3) \AA$, as evidenced by the longer approach.

Experimental

The title compounds were obtained from extracts of Hamigera taragaensis as previously described (Wellington et al., 2000). Hamigarin D underwent a spontaneous decomposition in CDCl_{3} solvent in the NMR tube yielding the decomposition product. Crystals suitable for X-ray diffraction studies were obtained from methanol.

Compound (I)

Crystal data

$\mathrm{C}_{20} \mathrm{H}_{25} \mathrm{BrO}_{5}$
$M_{r}=425.31$
Orthorhombic, $P 2_{1} 2_{1} 2_{1}$
$a=7.0958$ (13) £
$b=16.050$ (3) \AA
$c=16.856$ (4) \AA
$V=1919.7$ (7) \AA^{3}
$Z=4$
Mo $K \alpha$ radiation
Cell parameters from 6757
reflections
$\theta=2-26^{\circ}$
$\mu=2.17 \mathrm{~mm}^{-1}$
$T=203$ (2) K
Needle, yellow
$0.32 \times 0.16 \times 0.10 \mathrm{~mm}$
$D_{x}=1.472 \mathrm{Mg} \mathrm{m}^{-3}$

Data collection

Siemens SMART diffractometer
Area-detector ω scans
Absorption correction: multi-scan (Blessing, 1995)
$T_{\text {min }}=0.544, T_{\text {max }}=0.812$
8269 measured reflections
3020 independent reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.040$
$w R\left(F^{2}\right)=0.107$
$S=1.07$
3020 reflections
239 parameters
H atoms treated by a mixture of independent and constrained refinement

2738 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.041$
$\theta_{\text {max }}=26.0^{\circ}$
$h=-6 \rightarrow 6$
$k=0 \rightarrow 19$
$l=0 \rightarrow 20$
Intensity decay $<2 \%$

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.0495 P)^{2}\right. \\
& \quad+1.6200 P] \\
& \quad \text { where } P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }=0.003 \\
& \Delta \rho_{\max }=0.38 \mathrm{e} \AA \\
& \Delta \rho_{\min }=-0.47 \mathrm{e}^{-3} \AA^{-3} \\
& \text { Absolute structure: Flack }(1983) \\
& \text { Flack parameter }=0.000(13)
\end{aligned}
$$

Table 2
Hydrogen-bonding geometry $\left(\AA,^{\circ}\right)$ for (I).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 3-\mathrm{H} 3 A \cdots \mathrm{O} 2$	$0.92(6)$	$1.75(6)$	$2.580(6)$	$149(7)$

Compound (II)

Crystal data

$\mathrm{C}_{21} \mathrm{H}_{28} \mathrm{BrNO}_{4}$
$M_{r}=438.35$
Monoclinic, $P 2_{1}$ 。
$a=10.0979$ (1) \AA
$b=20.5473$ (2) \AA
$c=10.7452$ (1) \AA
$\beta=106.685(1)^{\circ}$
$V=2135.60(4) \AA^{3}$
$Z=4$
$D_{x}=1.363 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 8192 reflections
$\theta=2-26^{\circ}$
$\mu=1.95 \mathrm{~mm}^{-1}$
$T=203$ (2) K
Irregular fragment, colourless
$0.60 \times 0.35 \times 0.31 \mathrm{~mm}$

Data collection

Siemens SMART diffractometer
Area-detector ω scans
Absorption correction: multi-scan
(Blessing, 1995)
$T_{\text {min }}=0.388, T_{\text {max }}=0.583$
13334 measured reflections
8833 independent reflections
6885 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.021$
$\theta_{\text {max }}=28.2^{\circ}$
$h=-12 \rightarrow 12$
$k=-26 \rightarrow 27$
$l=0 \rightarrow 14$
Intensity decay $<2 \%$

Refinement

Refinement on F^{2}
$w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)\right]$
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.030$
$(\Delta / \sigma)_{\text {max }}=0.003$
$w R\left(F^{2}\right)=0.065$
$\Delta \rho_{\max }=0.27 \mathrm{e}_{\AA^{-3}}$
$S=0.85$
8833 reflections
$\Delta \rho_{\min }=-0.26 \mathrm{e} \mathrm{A}^{-3}$
500 parameters
Absolute structure: Flack (1983)
Flack parameter $=0.007(4)$

H atoms treated by a mixture of independent and constrained refinement

Table 1
Selected geometric parameters $\left(\AA,{ }^{\circ}\right)$ for (I).

Br1-C2	$1.902(4)$	C5-C6	$1.565(5)$
O1-C10	$1.404(5)$	C6-C7	$1.526(6)$
O2-C11	$1.235(5)$	C6-C12	$1.528(5)$
O3-C1	$1.364(6)$	C7-C8	$1.513(6)$
O4-C17	$1.172(6)$	C8-C9	$1.575(6)$
O5-C17	$1.318(5)$	C9-C15	$1.525(6)$
O5-C18	$1.462(5)$	C9-C10	$1.549(5)$
C5-C9	$1.562(5)$		
C5-C6-C12-C13	$172.3(4)$	C6-C5-C9-C8	$34.9(4)$
C9-C10-C17-O5	$163.3(3)$	C4a-C5-C9-C10	$28.7(5)$

Table 4
Hydrogen-bonding geometry ($\AA{ }^{\circ}{ }^{\circ}$) for (II).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 1-\mathrm{H} 1 A \cdots \mathrm{O} 22^{\mathrm{i}}$	$0.75(3)$	$2.18(3)$	$2.903(3)$	$163(3)$
$\mathrm{O} 4-\mathrm{H} 4 \cdots \mathrm{O} 24^{\mathrm{i}}$	$0.94(4)$	$1.67(4)$	$2.599(4)$	$170(4)$
$\mathrm{N} 2-\mathrm{H} 2 A \cdots \mathrm{O} 2^{\mathrm{ii}}$	$0.83(3)$	$2.06(3)$	$2.858(3)$	$160(3)$
$\mathrm{O} 23-\mathrm{H} 23 \cdots \mathrm{O}^{\mathrm{ii}}$	$0.78(4)$	$1.87(4)$	$2.643(3)$	$171(4)$

Symmetry codes: (i) $2-x, \frac{1}{2}+y,-z$; (ii) $2-x, y-\frac{1}{2},-z$.

H atoms were located geometrically and initially refined using a riding model. In the final refinement, the coordinates of the H atoms involved in hydrogen bonding were allowed to refine with their displacement parameters tied to the carrier atom. Final refinement allowed the fraction contribution of the inverted enantiomer to vary (Flack, 1983), the absolute structure parameter quoted being the refined value of this contribution. In both structures, the contribution of the inverted enantiomer is negligible.

For both compounds, data collection: SMART (Siemens, 1995); cell refinement: SMART; data reduction: SAINT (Siemens, 1995);
program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Siemens, 1994); software used to prepare material for publication: SHELXL97.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: BK1599). Services for accessing these data are described at the back of the journal.

References

Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. \& Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.

Blessing, R. H. (1995). Acta Cryst. A51, 33-38.
Flack, H. D. (1983). Acta Cryst. A39, 876-881.
Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.
Siemens (1994). SHELXTL. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Siemens (1995). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Wellington, K. D., Cambie, R. C., Rutledge, P. S. \& Bergquist, P. R. (2000). J. Nat. Prod. 63, 79-85.

